Charging dock
The robot must automatically charge when the battery level is low to realize a large-scale autonomous mobile system. It is also desirable to shorten the charging time and resume operation as soon as possible. Therefore, we have developed a charging dock equipped with a "charging connector that enables quick charging" and a "ROS package that aligns toward the AR marker."
* [Patent number] Patent No. 6893230
Information
"Automatic charging connector for autonomous mobile robots" jointly developed with Japan Aviation Electronics Industry, Ltd.
We are developing an automatic charging connector for autonomous mobile robots with Japan Aviation Electronics Industry, Ltd . The connector's allowed deviation between the robot and the charging station is ± 13 mm along the horizontal plane and ± 5 ° along the horizontal angle. The rated current is continuous 50A. *
The connector includes a circuit that charges when the connector alignment is detected by an optical sensor, preventing malfunctions and failures due to poor contact.
* Allowable deviation and rated current are values at the development stage. The permissible deviation may be smaller depending on the shape and mounting position of the robot or charging station to be mounted.
Position correction using AR marker
Use the ar_track_alvar package to correct the position of the charging station with the RGB camera only. As a result, we have developed a ROS package that approaches the recognized charging station from the front and performs automatic charging operations. You can attach an AR marker anywhere; with this function, the robot can stop accurately in various places.
Maintenance-free with automatic charging
The self-propelled drone that we are developing keeps track of the battery status, and when the battery is low, it docks itself in the charging dock and charges it. When charging is complete, it will automatically return to the patrol of the goal point, so no one will bother you.
00.対策なし
01.床のステッカーで周知
02.大回りで旋回
03.警笛を鳴らす
LiDARセンサで人を検出
速度変化の分析
LiDARセンサを利用した人流分析を実施し、各対策毎の軌跡や速度変化の違いを分析、結果的には警笛や大回りの効果が高い結果となりました。
Maintenance-free with automatic charging
The self-propelled drone that we are developing keeps track of the battery status, and when the battery is low, it docks itself in the charging dock and charges it. When charging is complete, it will automatically return to the patrol of the goal point, so no one will bother you.
本実験では、定性的には有効な対策であると考えられましたが、定量的には有効性を実証することが出来ず、混雑箇所の走行に対する対策が特に困難であり、人のロボット運用に対する理解や協力が必要となってくることが考えられます。
Maintenance-free with automatic charging
The self-propelled drone that we are developing keeps track of the battery status, and when the battery is low, it docks itself in the charging dock and charges it. When charging is complete, it will automatically return to the patrol of the goal point, so no one will bother you.
本実験ではロボットは RICE を利用し、3 時間に渡ってオフィスフロアのうち 2 フロアをエレベーターに乗って往復させる挙動を、1対策なし 2発話による注意喚起 3継続的な警笛による注意喚起 の 3 パターンの条件に分けて実施しました。
所要時間による定量的な評価・分析は難しかったですが、発話での注意喚起を行ったパターンで平均所要時間が大きいことが確認されました。
Maintenance-free with automatic charging
The self-propelled drone that we are developing keeps track of the battery status, and when the battery is low, it docks itself in the charging dock and charges it. When charging is complete, it will automatically return to the patrol of the goal point, so no one will bother you.
実際に深度カメラで距離の誤認識をされていた扉に、別の素材の壁材を貼り付け実証を行いました。(誤認識の原因と考えられたものは、光沢のある素材だった為、光沢の無いものを選定)結果は、誤認識されていた障害物が対策後には検知されておらず、改善されたことが分かります。
今回異常を示した深度カメラと同様の、いわゆる「Time of Flight (ToF)」方式を用いたセンサー
はロボットにおいて広く利用されていることから、今回のような特定の内装仕上げとの組み合わせでの誤認識は他のロボットでも発生する可能性があり、他事業者・運用者にも参考となる事例と考えられます。
Maintenance-free with automatic charging
The self-propelled drone that we are developing keeps track of the battery status, and when the battery is low, it docks itself in the charging dock and charges it. When charging is complete, it will automatically return to the patrol of the goal point, so no one will bother you.